Addition Strategies

Turn Around Facts

If you know $5+4=9$,
then you know 4+5=9.
When adding, the order doesn't matter.

$$
5+4=4+5
$$

Commutative Property

Facts with Zero

When adding zero to any number, the sum is the other addend.

Examples: $7+0=7$

$$
0+5=5
$$

Identity Property of Addition

Count Up
 (One-/Two- More Than)

When an addition problem contains a 1 or 2 , we can use this strategy. Start by whispering the greater addend and count on the other addend.

Example: 2 + 6 = 8 Start at 6 and count up 7. 8.

Doubles

When an addition problem contains two numbers that are the same we recognize this as a doubles problem. These are memorized facts. You can use visual clues to help you.

Example: $4+4=8$

Near Doubles

When an addition problem contains consecutive numbers on a number line, double the smaller addend and add 1.

$$
\begin{aligned}
& 4+5=0 \cdot(?) \cdot(?) \\
& 4+4+1=(?)(:) \\
& 8+1=9 \text { OOOOOOO}
\end{aligned}
$$

Decompose

(Decomposing is what allows make-ten and near doubles to work.) Break down the addends and add the pieces back together.

Example:
$11+4=$
$(10+1)+4=$
$10+(1+4)=$
$10+5=15$

Associative Property

Sums of 10

This group includes all facts with a sum of

 10. Picture the Ten Frame when solving.
Examples: $7+3=10$

$$
2+8=10
$$

Make-Ten (Use the Ten Frame)

This strategy works well with at least one addend of 8 or 9 . When adding 9 , picture a Ten Frame. Take one away from the other addend and move it over in your mind. For $9+6$ think: 9 in the ten frame means that I need one more to make ten. If I move one from the 6 over, I have 5 left. So I can add $10+5$ and that equals 15.

$9+6$ has the same sum as

$$
10+5
$$

Do the same for 8, except you have 2 open in the Tens Frame.

