Multiplying by 0	"There's Always Nothing" When you multiply by 0 your answer is always 0 . To help think of it as a word problem: Ms. Kennedy loves to make blueberry pancakes. Today she made 5 pancakes. Each had 0 blueberries. How many blueberry pancakes did she make? $5 \times 0=0$
Multiplying by 1	"There's Just 1 Set" When you multiply by 1 your answer is always the other factor because you only have 1 set. Mrs. Kennedy started collecting marbles. She bought 1 bag of marbles that had 9 inside. How many marbles did she buy? $1 \times 9=9$
Multiplying by 2	"DOUBLE IT!" When you multiply by 2 you can double the other factor. $\begin{array}{rr} 2 \times 8=16 & 7 \times 2=14 \\ (8+8=16) & (7+7=14) \\ \hline \end{array}$
Multiplying by 3	"Double Plus a Set" When you multiply by 3 you can double the other factor and then add one more set. $\begin{array}{rl} 3 \times 8=24 & 3 \times 7=21 \\ (2 \times 8)+(1 \times 8) & (2 \times 7)+(1 \times 7) \\ 8+8=16 & 7+7=14 \\ 16+8=24 & 14+7=21 \end{array}$
Multiplying by 4	"Order a Double-Double!" When you multiply by 4 you can double the other factor twice. $\begin{array}{ll} \quad 5 \times 4=20 & 4 \times 6=24 \\ 5+5=10 & 6+6=12 \\ 10+10=20 & 12+12=24 \end{array}$

Multiplying by 5	"Skip Count By 5's" When you multiply by 5 you can skip count to help solve. $\begin{array}{cl} 5 \times 6=30 & 3 \times 5=15 \\ (5,10,15,20,25,30) & (5,10,15) \end{array}$
	There are two strategies to multiply by 6
Multiplying by 6	"Multiply by 5 then Add a Set" When you multiply by 6 you can skip count by 5 's then add another set. $\begin{gathered} 6 \times 6=36 \\ (5 \times 6)+(1 \times 6) \\ 5 \times 6=301 \times 6=6 \\ 30+6=36 \end{gathered}$ $\begin{gathered} 3 \times 6=18 \\ (3 \times 5)+(3 \times 12 \\ 3 \times 5=153 \times 1=3 \\ 15+3=18 \end{gathered}$
Multiplying by 6	DOUBLE IT! If you know how to multiply by 3, then you can double the product. $\begin{array}{ll} \quad 6 \times 6=36 & 4 \times 6=24 \\ 3 \times 6=18 & 4 \times 3=12 \\ 18+18=36 & 12+12=24 \\ \hline \end{array}$
Multiplying by 7	Break it up! When you multiply by 7 , you can break it up to help you find the product. $\begin{array}{cc} 7 \times 6=42 & 7 \times 3=15 \\ (5 \times 6)+(2 \times 6) & \cdot(5 \times 3)+(2 \times 3) \\ 5 \times 6=30,2 \times 6=12 \quad \circ \cdot 5 \times 3=15,2 \times 3=6 \\ 30+12=42 & \overbrace{}^{\circ} \quad \begin{array}{c} 7 \text { Think: } 7=5+22 \end{array} 15+6=21 \end{array}$

	Here are two strategies to multiply by 8
Multiplying by 8	DOUBLE IT! If you know how to multiply by 4 , then you can double the product. $\begin{array}{rl} 8 \times 6=48 & 4 \times 8=32 \\ 4 \times 6 & =24 \\ 24+24=48 & 4 \times 4=16 \\ \hline & 16+16=32 \end{array}$
	Double-Double-Double! When you multiply by 8 you can double the other factor three times. $\begin{gathered} 8 \times 5=40 \\ 2 \times 5=10 \\ 2 \times 10=20 \text { double once } \rightarrow 5+5=10 \\ 2 \times 20=40 \quad \text { double twice } \rightarrow 10+10=20 \\ \text { double three times } \rightarrow 20+20=40 \end{gathered}$
Multiplying by 9	There are two strategies for Multiplying by 9
	"Think 10" If I know how to multiply by ten, I know the product when multiplying by 9 is one decade less and the sum of the tens digit and the ones digit always equals nine. $9 \times 6 \rightarrow I$ know $10 \times 6=60$ so... the product is in the 50 's $9 \times 6=5$? I know $5+4=9$ so... $\quad 9 \times 6=54$
	"Multiply by 10 then Take a Set Away" When you multiply by 9 you can multiply by 10 then take a set away. $\begin{array}{cc} 9 \times 6=54 & 3 \times 9=27 \\ (10 \times 6=60,60-6=54) & (3 \times 10=30,30-3=27) \end{array}$

